Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.962
Filtrar
1.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622640

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Assuntos
Lesões Encefálicas Traumáticas , Fibrina , Humanos , Camundongos , Animais , Fibrina/genética , Fibrina/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fibrinogênio/metabolismo , Imunidade Inata , Estresse Oxidativo , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 14(1): 9225, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649717

RESUMO

Thrombin generation (TG) and fibrin clot formation represent the central process of blood coagulation. Up to 95% of thrombin is considered to be generated after the clot is formed. However, this was not investigated in depth. In this study, we conducted a quantitative analysis of the Thrombin at Clot Time (TCT) parameter in 5758 simultaneously recorded TG and clot formation assays using frozen plasma samples from commercial sources under various conditions of activation. These samples were supplemented with clotting factor concentrates, procoagulant lipid vesicles and a fluorogenic substrate and triggered with tissue factor (TF). We found that TCT is often close to a 10% of thrombin peak height (TPH) yet it can be larger or smaller depending on whether the sample has low or high TPH value. In general, the samples with high TPH are associated with elevated TCT. TCT appeared more sensitive to some procoagulant phenotypes than other commonly used parameters such as clotting time, TPH or Thrombin Production Rate (TPR). In a minority of cases, TCT were not predicted from TG parameters. For example, elevated TCT (above 15% of TPH) was associated with either very low or very high TPR values. We conclude that clotting and TG assays may provide complementary information about the plasma sample, and that the TCT parameter may serve as an additional marker for the procoagulant potential in plasma sample.


Assuntos
Coagulação Sanguínea , Fibrina , Trombina , Trombina/metabolismo , Humanos , Fibrina/metabolismo , Testes de Coagulação Sanguínea/métodos , Tromboplastina/metabolismo , Tromboplastina/análise
3.
Sci Transl Med ; 16(742): eadi4490, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598613

RESUMO

Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting.


Assuntos
Hemostáticos , Roedores , Animais , Camundongos , Suínos , Roedores/metabolismo , Distribuição Tecidual , Plaquetas/metabolismo , Hemorragia , Fibrina/química , Fibrina/metabolismo
4.
Biophys J ; 123(5): 610-621, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38356261

RESUMO

We modify a three-dimensional multiscale model of fibrinolysis to study the effect of plasmin-mediated degradation of fibrin on tissue plasminogen activator (tPA) diffusion and fibrinolysis. We propose that tPA is released from a fibrin fiber by simple kinetic unbinding, as well as by "forced unbinding," which occurs when plasmin degrades fibrin to which tPA is bound. We show that, if tPA is bound to a small-enough piece of fibrin that it can diffuse into the clot, then plasmin can increase the effective diffusion of tPA. If tPA is bound to larger fibrin degradation products (FDPs) that can only diffuse along the clot, then plasmin can decrease the effective diffusion of tPA. We find that lysis rates are fastest when tPA is bound to fibrin that can diffuse into the clot, and slowest when tPA is bound to FDPs that can only diffuse along the clot. Laboratory experiments confirm that FDPs can diffuse into a clot, and they support the model hypothesis that forced unbinding of tPA results in a mix of FDPs, such that tPA bound to FDPs can diffuse both into and along the clot. Regardless of how tPA is released from a fiber, a tPA mutant with a smaller dissociation constant results in slower lysis (because tPA binds strongly to fibrin), and a tPA mutant with a larger dissociation constant results in faster lysis.


Assuntos
Fibrinolisina , Fibrinólise , Fibrinolisina/metabolismo , Fibrinolisina/farmacologia , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Fibrina/metabolismo , Cinética , Plasminogênio/metabolismo
5.
Sci Rep ; 14(1): 2623, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297113

RESUMO

Blood clots, which are composed of blood cells and a stabilizing mesh of fibrin fibers, are critical in cessation of bleeding following injury. However, their action is transient and after performing their physiological function they must be resolved through a process known as fibrinolysis. Internal fibrinolysis is the degradation of fibrin by the endogenous or innate presence of lytic enzymes in the bloodstream; under healthy conditions, this process regulates hemostasis and prevents bleeding or clotting. Fibrin-bound tissue plasminogen activator (tPA) converts nearby plasminogen into active plasmin, which is bound to the fibrin network, breaking it down into fibrin degradation products and releasing the entrapped blood cells. It is poorly understood how changes in the fibrin structure and lytic protein ratios influence the biochemical regulation and behavior of internal fibrinolysis. We used turbidity kinetic tracking and microscopy paired with mathematical modeling to study fibrin structure and lytic protein ratios that restrict internal fibrinolysis. Analysis of simulations and experiments indicate that fibrinolysis is driven by pore expansion of the fibrin network. We show that this effect is strongly influenced by the ratio of fibrin:tPAwhen compared to absolute tPA concentration. Thus, it is essential to consider relative protein concentrations when studying internal fibrinolysis both experimentally and in the clinic. An improved understanding of effective internal lysis can aid in development of better therapeutics for the treatment of bleeding and thrombosis.


Assuntos
Fibrinólise , Trombose , Humanos , Ativador de Plasminogênio Tecidual/metabolismo , Coagulação Sanguínea , Fibrina/metabolismo
6.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281774

RESUMO

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Assuntos
Metotrexato , Álcool Feniletílico , Fibrose Pulmonar , Animais , Ratos , Dexametasona/farmacologia , Fibrina/metabolismo , Interleucina-4/metabolismo , Pulmão/patologia , Metotrexato/efeitos adversos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Tromboplastina/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Blood ; 143(6): 548-560, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944157

RESUMO

ABSTRACT: Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbß3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.


Assuntos
Células-Tronco Pluripotentes Induzidas , Trombose , Humanos , Megacariócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Plaquetas/metabolismo , Trombose/metabolismo , Fibrina/metabolismo , Plasma
9.
J Thromb Thrombolysis ; 57(2): 248-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932588

RESUMO

BACKGROUND: Residual pulmonary vascular obstruction (RPVO) is common following pulmonary embolism (PE) but its association with fibrin clot properties is poorly understood. We investigated whether prothrombotic state and hypofibrinolysis markers can identify patients with RPVO. METHODS: In 79 normotensive noncancer patients (aged 56 ± 13.3 years) with acute PE, we determined fibrin clot permeability (Ks), clot lysis time (CLT), endogenous thrombin potential (ETP), fibrinolysis proteins, oxidative stress markers, and E-selectin on admission before initiation of anticoagulant therapy, after 5-7 days, and 3 months of anticoagulation. RPVO was diagnosed using computed tomography angiography 3-6 months since PE. RESULTS: Patients with RPVO (n = 23, 29.1%) had at baseline higher simplified Pulmonary Embolism Severity Index (sPESI) (P = 0.004), higher N-terminal brain natriuretic propeptide (P = 0.006) and higher D-dimer (P = 0.044). Patients with versus without RPVO had lower Ks (P < 0.001) and longer CLT (P < 0.05), both at baseline and 5-7 days since admission, but not at 3 months. Patients with RPVO showed 40.6% higher E-selectin (P < 0.001) solely at 3 months. By multivariable logistic regression, baseline Ks (odds ratio [OR] 0.010, 95% confidence interval [CI] 0.001-0.837, P = 0.042, per 10- 9 cm2), baseline D-dimer (OR 1.105, 95% CI 1.000-1.221, P = 0.049, per 100 ng/ml), and E-selectin levels after 3 months (OR 3.874, 95% CI 1.239-12.116, P = 0.020, per 1 ng/ml) were associated with RPVO. CONCLUSIONS: RPVO patients despite anticoagulation characterize with the formation of denser fibrin clots on admission and higher E-selectin at 3 months. Those parameters could be the potential novel RPVO risk factors that warrant further evaluation in an independent cohort.


Assuntos
Embolia Pulmonar , Trombose , Doenças Vasculares , Humanos , Selectina E , Embolia Pulmonar/diagnóstico , Trombose/complicações , Fatores de Risco , Fibrinólise , Fibrina/metabolismo , Tempo de Lise do Coágulo de Fibrina , Anticoagulantes , Permeabilidade
10.
Cell Prolif ; 57(1): e13528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37539497

RESUMO

Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets. FM showed a morphology and extracellular matrix composition similar to the native dermal papilla, including Versican and Collagen IV and increasing cell viability up to 85%. While both systems induce epidermal invaginations expressing hair-specific keratins K14, K15, K71, and K75 in in vitro skin cultures, the number of generated structures increases from 17% to 49% when DPS and FM were used, respectively. These data show the potential of our experimental setting for in vitro hair follicle neogenesis with wild adult hFDPc using FM, being a crucial step in the pursuit of human hair follicle regeneration therapies.


Assuntos
Folículo Piloso , Microgéis , Humanos , Fibrina/metabolismo , Pele , Epiderme , Células Cultivadas
11.
Biochemistry ; 63(2): 202-211, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38156948

RESUMO

Based on the high structural homology between vascular endothelial (VE)-cadherin and neural (N)-cadherin, we hypothesized that fibrin, which is known to interact with VE-cadherin and promote angiogenesis through this interaction, may also interact with N-cadherin. To test this hypothesis, we prepared fibrin and its plasmin-produced and recombinant fragments covering practically all parts of the fibrin molecule. We also prepared the soluble extracellular portion of N-cadherin (sN-cadherin), which includes all five extracellular N-cadherin domains, and studied its interaction with fibrinogen, fibrin, and the aforementioned fibrin fragments using two independent methods, ELISA and SPR. The experiments confirmed our hypothesis, revealing that fibrin interacts with sN-cadherin with high affinity. Furthermore, the experiments localized the N-cadherin binding site within the fibrin ßN-domains. Notably, the recombinant dimeric (ß15-66)2 fragment, corresponding to these domains and mimicking their dimeric arrangement in fibrin, preserved the N-cadherin-binding properties of fibrin. To localize the fibrin binding site within N-cadherin, we performed ELISA and SPR experiments with (ß15-66)2 and recombinant N-cadherin fragments representing its individual extracellular domains and combinations thereof. The results obtained indicate that the interaction of fibrin with N-cadherin occurs through the third and fifth extracellular domains of the latter. This is in contrast to our previous study, which revealed that fibrin interacts only with the third extracellular domain of VE-cadherin. In conclusion, our study identified N-cadherin as a novel receptor for fibrin and localized complementary binding sites within both fibrin and N-cadherin. The pathophysiological role of this interaction remains to be established.


Assuntos
Células Endoteliais , Fibrina , Fibrina/metabolismo , Sítios de Ligação , Células Endoteliais/metabolismo , Fibrinogênio/metabolismo , Caderinas/metabolismo
12.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069268

RESUMO

The effective and long-term treatment of cartilage defects is an unmet need among patients worldwide. In the past, several synthetic and natural biomaterials have been designed to support functional articular cartilage formation. However, they have mostly failed to enhance the terminal stage of chondrogenic differentiation, leading to scar tissue formation after the operation. Growth factors substantially regulate cartilage regeneration by acting on receptors to trigger intracellular signaling and cell recruitment for tissue regeneration. In this study, we investigated the effect of recombinant insulin-like growth factor 1 (rIGF-1), loaded in fibrin microbeads (FibIGF1), on cartilage regeneration. rIGF-1-loaded fibrin microbeads were injected into full-thickness cartilage defects in the knees of goats. The stability, integration, and quality of tissue repair were evaluated at 1 and 6 months by gross morphology, histology, and collagen type II staining. The in vivo results showed that compared to plain fibrin samples, particularly at 6 months, FibIGF1 improved the functional cartilage formation, confirmed through gross morphology, histology, and collagen type II immunostaining. FibIGF1 could be a promising candidate for cartilage repair in the clinic.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Humanos , Animais , Colágeno Tipo II/metabolismo , Fibrina/metabolismo , Cabras , Cartilagem Articular/metabolismo , Doenças das Cartilagens/metabolismo , Condrócitos
13.
RMD Open ; 9(4)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097272

RESUMO

OBJECTIVES: This study investigates the diagnostic role of synovial tissue analysis in children presenting with arthritis and assesses its prognostic significance to predict clinical outcome in juvenile idiopathic arthritis (JIA). METHODS: Synovial samples of paediatric patients undergoing synovial biopsy between 1995 and 2020 were analysed histologically and immunohistochemically. Relationships between histological/immunohistochemical parameters and clinical variables were assessed. RESULTS: Synovial biopsy was performed for diagnosis in 65 cases allowing to correctly classify 79% of patients.At histological analysis on 42 JIA samples, any difference in the number of synovial lining layers, subsynovial elementary lesions, fibrin deposit, Krenn Synovitis Score, inflammatory infiltrate score and pattern emerged between JIA subsets or on treatment exposure. Synovial tissue analysis predicted outcome: higher number of synovial layers predicted worse disease course (>4 flares during follow-up; 4.5 vs 3.0, p=0.035), even after adjusting for age at diagnosis and observation time (OR 2.2, p=0.007); subjects who had switched>2 biological disease-modifying antirheumatic drugs had higher prevalence of subsynovial elementary lesions (55.6% vs 10.3%, p=0.005) and fibrin deposits in synovial lining (60.0% vs 22.6%, p=0.049), even after adjustment for observation time and age at diagnosis (OR 8.1, p=0.047). At immunohistochemistry on 31 JIA samples, higher CD3 expression was described in polyarticular compared with oligoarticular subset (p=0.040). Patients with severe disease course had higher CD20+ rate (OR 7, p=0.023), regardless of JIA subset and treatment exposure. CONCLUSIONS: Synovial tissue analysis might support the clinicians in the diagnostic approach of paediatric patients presenting with arthritis and guide the clinical management in JIA.


Assuntos
Artrite Juvenil , Sinovite , Humanos , Criança , Artrite Juvenil/diagnóstico , Artrite Juvenil/tratamento farmacológico , Prognóstico , Membrana Sinovial/metabolismo , Sinovite/patologia , Progressão da Doença , Fibrina/metabolismo
14.
Thromb Res ; 232: 70-76, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949000

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) can traverse the intestinal barrier and enter bloodstream, causing endotoxemia and triggering inflammation. Increased circulating LPS was reported in arterial thromboembolism. We investigated whether increased LPS levels occur in acute pulmonary embolism (PE) and if it is associated with a prothrombotic state. METHODS: We studied 120 normotensive PE patients (aged 59 [48-68] years) on admission, after 5-7 days, and after a 3-month anticoagulation. Serum LPS levels, along with zonulin, a marker of gut permeability, endogenous thrombin potential (ETP), fibrin clot permeability (Ks), clot lysis time (CLT), fibrinolysis proteins, and platelet markers were assessed. RESULTS: Median LPS concentration on admission was 70.5 (61.5-82) pg/mL (min-max, 34-134 pg/mL), in association with C-reactive protein (r = 0.22, p = 0.018), but not with fibrinogen, D-dimer or platelet markers. Patients with more severe PE had higher LPS levels compared with the remainder. Median zonulin level was 3.26 (2.74-4.08) ng/mL and correlated with LPS (r = 0.66, p < 0.0001). Patients with baseline LPS levels in the top quartile (≥82 pg/mL; n = 29) compared to lower quartiles had 18.6 % increased ETP, 14.5 % reduced Ks, and 25.3 % prolonged CLT, related to higher plasminogen activator inhibitor type 1 (PAI-1) levels. LPS decreased by 23.4 % after 5-7 days and by 40.4 % after 3-month anticoagulation together with reduced zonulin by 18.4 % and 22.3 %, respectively, compared to baseline (all p < 0.001). LPS levels were not related with fibrin characteristics and other variables assessed at 3 months. CONCLUSIONS: Low-grade endotoxemia is detectable in patients with acute PE and may contribute to increased thrombin generation and PAI-1-mediated hypofibrinolysis.


Assuntos
Endotoxemia , Embolia Pulmonar , Trombose , Humanos , Fibrina/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Trombina/metabolismo , Endotoxemia/complicações , Lipopolissacarídeos , Trombose/etiologia , Fibrinólise , Tempo de Lise do Coágulo de Fibrina , Embolia Pulmonar/complicações , Fenótipo , Doença Aguda , Anticoagulantes
15.
J Thromb Haemost ; 21(12): 3304-3316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000850

RESUMO

Fibrinolysis is the system primarily responsible for removal of fibrin deposits and blood clots in the vasculature. The terminal enzyme in the pathway, plasmin, is formed from its circulating precursor, plasminogen. Fibrin is by far the most legendary substrate, but plasmin is notoriously prolific and is known to cleave many other proteins and participate in the activation of other proteolytic systems. Fibrinolysis is often overshadowed by the coagulation system and viewed as a simplistic poorer relation. However, the primordial plasminogen activators evolved alongside the complement system, approximately 70 million years before coagulation saw the light of day. It is highly likely that the plasminogen activation system evolved with its roots in primordial immunity. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allow plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, numerous pathogens express their own plasminogen activators or contain surface proteins that provide binding sites for host plasminogen. The fibrinolytic system has been harnessed for clinical medicine for many decades with the development of thrombolytic drugs and antifibrinolytic agents. Our refined understanding and appreciation of the fibrinolytic system and its alliance with infection and immunity and beyond are paving the way for new developments and interest in novel therapeutics and applications. One must ponder as to whether the nomenclature of the system hampered our understanding, by focusing on fibrin, rather than the complex myriad of interactions and substrates of the plasminogen activation system.


Assuntos
Fibrinolisina , Fibrinólise , Humanos , Fibrinólise/fisiologia , Fibrinolisina/metabolismo , Ativadores de Plasminogênio , Plasminogênio , Fibrina/metabolismo , Serina Proteases
16.
Sci Rep ; 13(1): 19526, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945689

RESUMO

Vascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation. Intravital microscopy and immunofluorescence are applied to elucidate the role of microglia in eCM. Results show microgliosis and coagulopathy occur early in disease at 3 dpi (day post-infection), and both are exacerbated as disease progresses to 7dpi. Vessel associated microglia increase significantly at 7 dpi, and the expression of the microglial chemoattractant CCL5 (RANTES) is increased versus uninfected and localized with fibrin(ogen) in vessels. PLX3397 microglia depletion resulted in rapid behavioral decline, severe hypothermia, and greater increase in vascular coagulopathy. This study suggests that microglia play a prominent role in controlling infection-initiated coagulopathy and supports a model in which microglia play a protective role in cerebral malaria by migrating to and patrolling the cerebral vasculature, potentially regulating degree of coagulation during systemic inflammation.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Microglia/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Fibrina/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Iran Biomed J ; 27(5): 257-68, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873638

RESUMO

Background: Anaerobes are the causative agents of many wound infections. B. fragilis is the most prevalent endogenous anaerobic bacterium causes a wide range of diseases, including wound infections. This study aimed to assess the antibacterial effect of mouse adipocyte derived-mesenchymal stem cell (AD-MSCs) encapsulated in collagen-fibrin (CF) hydrogel scaffolds on B. fragilis wound infection in an animal model. Methods: Stem cells were extracted from mouse adipose tissue and confirmed by surface markers using flow cytometry analysis. The possibility of differentiation of stem cells into osteoblast and adipocyte cells was also assessed. The extracted stem cells were encapsulated in the CF scaffold. B. fragilis wound infection was induced in rats, and then following 24 h, collagen and fibrin-encapsulated mesenchymal stem cells (MSCs) were applied to dress the wound. One week later, a standard colony count test monitored the bacterial load in the infected rats. Results: MSCs were characterized as positive for CD44, CD90, and CD105 markers and negative for CD34, which were able to differentiate into osteoblast and adipocyte cells. AD-MSCs encapsulated with collagen and fibrin scaffolds showed ameliorating effects on B. fragilis wound infection. Additionally, AD-MSCs with a collagen scaffold (54 CFU/g) indicated a greater effect on wound infection than AD-MSCs with a fibrin scaffold (97 CFU/g). The combined CF scaffold demonstrated the highest reduction in colony count (the bacteria load down to 29 CFU/g) in the wound infection. Conclusion: Our findings reveal that the use of collagen and fibrin scaffold in combination with mouse AD-MSCs is a promising alternative treatment for B. fragilis.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Células-Tronco Mesenquimais , Infecção dos Ferimentos , Camundongos , Ratos , Animais , Bacteroides fragilis , Fibrina/metabolismo , Hidrogéis , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Colágeno/metabolismo , Diferenciação Celular , Infecção dos Ferimentos/metabolismo , Anti-Infecciosos/metabolismo , Tecidos Suporte
18.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 24-30, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807338

RESUMO

This research examined the effects of varying amounts of fibrinogen (the fibrin precursor) and HA-MA on mechanical strength, BMSC proliferation, and chondrogenesis potential in vitro. In order to start a culture, fibrinogen, aprotinin, doxycycline, and HA-MA were well mixed in 200 L of AMEM containing 1% (w/v) photoinitiator. In order to produce a fibrin gel, thrombin was used at 1, 3,5, and 7 days after implantation, live/dead staining and a metabolic-activity test were used to examine the viability and proliferation of BMSCs inside fibrin/HA-MA. The cell lysis solution from the Real Time ready Cell Lysis Kit was added to each gel. Both primer and probe mixes, as well as DNA polymerase, deoxyribonucleotide triphosphates, an activator, and an enhancer, were mixed before the lysis process began to asses mRNA expression. The mechanical strength of fibrin hydrogels was shown to be proportional to the quantity of HA-MA utilised in the reinforcement. Quantitative polymerase chain reaction demonstrated a reduction in the expression of collagen type 1 alpha 1 mRNA in BMSCs after they were treated in a fibrin/HA-MA hydrogel. Using fibrin/HA-MA hydrogel as a delivery technique for bone marrow stem cells may induce BMSC differentiation into chondrocytes and perhaps aid in articular cartilage repair for OA therapy (BMSCs). We concluded that the utilisation of bone marrow concentration in conjunction with a combination of fibrin and Hyaluronan treatment is safe for patients suffering from OCD of the ankle and is well tolerated by these patients as both a primary treatment and a non-primary treatment option.


Assuntos
Ácido Hialurônico , Ortopedia , Humanos , Tornozelo , Medula Óssea , Fibrina/metabolismo , Hidrogéis/metabolismo , RNA Mensageiro/metabolismo , Fibrinogênio/metabolismo , Condrogênese , Células da Medula Óssea/metabolismo
19.
Artigo em Chinês | MEDLINE | ID: mdl-37805789

RESUMO

Objective: To explore the effects of advanced platelet-rich fibrin (A-PRF) on deep partial-thickness burn wounds in nude mice and its mechanism. Methods: The experimental study method was adopted. Forty healthy volunteers in Subei People's Hospital were recruited, including 32 females and 8 males, aged 60 to 72 years. Leukocyte platelet-rich fibrin (L-PRF) and A-PRF membranes were prepared after venous blood was extracted from them. The microstructure of two kinds of platelet-rich fibrin (PRF) membranes was observed by field emission scanning electron microscope. The number of samples was 3 in the following experiments. The L-PRF and A-PRF membranes were divided into L-PRF group and A-PRF group and cultured, and then the release concentrations of platelet-derived growth factor-AB (PDGF-AB) and vascular endothelial growth factor (VEGF) in culture supernatant were determined by enzyme-linked immunosorbent assay on culture day 1, 3, 7, and 14. Mice L929 fibroblasts (Fbs) were divided into L-PRF group and A-PRF group, and cultured with L-PRF or A-PRF conditioned medium, respectively. On culture day 1, 3, and 7, the cell proliferation activity was detected by thiazole blue method. The cell migration rate was detected and calculated at 24 h after scratching by scratch test. Thirty-six male BALB/c nude mice aged 6-8 weeks were selected to make a deep partial-thickness burn wound on one hind leg, and then divided into normal saline group, L-PRF group, and A-PRF group, according to the random number table, with 12 mice in each group. The wounds of nude mice in normal saline group were only washed by normal saline, while the wounds of nude mice in L-PRF group and A-PRF group were covered with the corresponding membranes in addition. The wounds of nude mice in the 3 groups were all bandaged and fixed with dressings. On treatment day 4, 7, and 14, the wound healing was observed and the wound healing rate was calculated. Masson staining was used to observe the new collagen in wound tissue, and immunohistochemical staining was used to detect the percentage of CD31 positive cells in the wound. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, analysis of variance for factorial design, one-way analysis of variance, and least significant difference test. Results: L-PRF membrane's dense network structure was composed of coarse fibrin bundles, with scattered white blood cells and platelets with complete morphology. A-PRF membrane's loose network structure was composed of fine fibrin bundles, with scattered small amount of deformed white blood cells and platelets. On culture day 1, the release concentration of PDGF-AB in PRF culture supernatant in A-PRF group was significantly higher than that in L-PRF group (t=5.73, P<0.05), while the release concentrations of VEGF in PRF culture supernatant in the two groups were similar (P>0.05). On culture day 3, 7, and 14, the release concentrations of PDGF-AB and VEGF in PRF culture supernatant in A-PRF group were significantly higher than those in L-PRF group (with t values of 6.93, 7.45, 5.49, 6.97, 8.97, and 13.64, respectively, P<0.05). On culture day 3, 7, and 14, the release concentrations of PDGF-AB and VEGF in PRF culture supernatant in the two groups were all significantly higher than those in the previous time points within the group (P<0.05). On culture day 1, 3, and 7, the proliferation activity of mice Fbs in A-PRF group was 0.293±0.034, 0.582±0.054, and 0.775±0.040, respectively, which were significantly stronger than 0.117±0.013, 0.390±0.036, and 0.581±0.037 in L-PRF group (with t values of 8.38, 5.14, and 6.16, respectively, P<0.05). At 24 h after scratching, the migration rate of mice Fbs in A-PRF group was (60.9±2.2)%, which was significantly higher than (39.1±2.3)% in L-PRF group (t=11.74, P<0.05). On treatment day 4, the wound exudates of nude mice in L-PRF group and A-PRF group were less with no obvious signs of infection, while the wounds of nude mice in normal saline group showed more exudation. On treatment day 7, the wounds of nude mice in L-PRF group and A-PRF group were dry and crusted, while there was still a small amount of exudate in the wounds of nude mice in normal saline group. On treatment day 14, the wounds of nude mice in A-PRF group tended to heal; a small portion of wounds remained in nude mice in L-PRF group; the wound of nude mice was still covered with eschar in normal saline group. On treatment day 4, 7, and 14, the wound healing rate and percentage of CD31 positive cells of nude mice in L-PRF group were all significantly higher than those in normal saline group (P<0.05); compared with those in normal saline group and L-PRF group, the wound healing rate of nude mice in A-PRF group was significantly increased (P<0.05), the newborn collagen was orderly and evenly distributed, with no excessive deposition, and the percentage of CD31 positive cells was significantly increased (P<0.05). Conclusions: The stable fibrin network structure of A-PRF can maintain the sustained release of growth factors, accelerate cell proliferation, and promote cell migration, so as to shorten the healing time and improve the healing quality of deep partial-thickness burn wounds in nude mice.


Assuntos
Queimaduras , Fibrina Rica em Plaquetas , Feminino , Humanos , Masculino , Camundongos , Animais , Fibrina Rica em Plaquetas/metabolismo , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular , Solução Salina , Queimaduras/terapia , Colágeno , Fibrina/metabolismo
20.
Vet J ; 298-299: 106018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532174

RESUMO

Granulomatous meningoencephalitis (GME) and necrotizing encephalitides (NE) are the most common immune-mediated inflammatory diseases of the central nervous system in dogs. Activation of the fibrinolytic system in multiple sclerosis, a similar immune-mediated disease affecting the central nervous system in humans, seems to be related to disease progression. The aim of this study was to identify fibrin/fibrinogen and D-dimer deposition, as well as presence of intravascular thrombosis (IVT) in brains of dogs with a diagnosis of GME or NE. Immunohistochemical studies using antibodies against fibrin/fibrinogen and D-dimers were performed. Statistical analyses were performed to determine whether there were differences in the presence and location of fibrin/fibrinogen, D-dimers deposits, and IVT between GME and NE. Samples from sixty-four dogs were included in the study: 32 with a diagnosis of GME and 32 with a diagnosis of NE. Fibrin/fibrinogen depositions were detected in all samples and d-dimers were detected in 43/64 samples. IVT was present in 29/64 samples, with a significantly higher score in samples from dogs with NE than in samples from dogs with GME (P = 0.001). These data support hemostatic system activation in both diseases, especially NE. This finding might be related to the origin of the necrotic lesions seen in NE, which could represent chronic ischemic lesions. Further studies are needed to investigate the association between vascular lesions and the histopathological differences between GME and NE and the hemostatic system as a potential therapeutic target.


Assuntos
Doenças do Cão , Hemostáticos , Meningoencefalite , Trombose , Humanos , Cães , Animais , Fibrina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Meningoencefalite/veterinária , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Trombose/veterinária , Doenças do Cão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...